

#### LIMITS OF SEPARATION PERFORMANCE IN SFC

SHIMADZU SFC USER MEETING

<u>Ken Broeckhoven</u> Department of Chemical Engineering (CHIS) Vrije Universiteit Brussel (VUB), Belgium



- Supercritical Fluid Chromatography/SFC (incl. sub-critical conditions) employs a low viscosity mobile phase that contains mainly CO<sub>2</sub>
  - Viscosity η between 0.1-0.25 cP for 10-50% MeOH at 30°C and 150 bar (vs. 0.8 cP for water at 30°C) (1 cP = 1mPa·s)
  - → Fast separations possible: high  $D_{mol} \sim 1/\eta$ 
    - Optimal velocity u<sub>opt</sub> ~ D<sub>mol</sub>
    - Fast mass transfer: C-term ~ 1/D<sub>mol</sub>

→ Low column pressure drop since  $\Delta P \sim \eta$  (but also  $\sim u_{opt}$ )

• "Green" technique (low waste/solvent use), unique selectivity and orthogonality, chiral separations, advantages for scale up to prep...





Supercritical Fluid Chromatograph

# SFC Basic Guide



Fig. 8 Linear Velocity vs. Column Back Pressure





Fig. 1 Phase Diagram for Carbon Dioxide

Table 1 Physical Properties of Supercritical Fluids

|                      | Diffusion Coefficient (m <sup>2</sup> /s) | Density (g/cm³) | Viscosity (g/cm·s) |
|----------------------|-------------------------------------------|-----------------|--------------------|
| Liquids              | 10-6                                      | 1               | 10-2               |
| Supercritical Fluids | 10-3                                      | 0.2-0.8         | 10-3               |
| Gases                | 10-1                                      | 10-3            | 10-4               |



- Diffusion coefficients in SFC claimed to be very high (10<sup>-7</sup>-10<sup>-8</sup> m<sup>2</sup>/s) relative to LC (10<sup>-9</sup> m<sup>2</sup>/s)
- Range of  $D_{mol}$  based on small neutral molecules in pure  $CO_2$  at low backpressure (< 100 bar)
- Addition of minor amounts of co-solvent strongly decrease D<sub>mol</sub>





T. Januarius et al., J. Chromatogr. A (2022) 463485

- Density  $\rho$  of SFC mobile phases similar or higher than that of modifier







**Figure 2.1** Density of pure  $CO_2$  as a function of pressure at four different temperatures. From top to bottom: 40, 60, 80 and 100 °C.



T. Januarius et al., J. Chromatogr. A (2022) 463485

### LIMITS OF SEPARATION POWER IN CHROMATOGRAPHY

- Time-efficiency trade off is given by the Knox-Saleem equation for a fully optimized system (flow rate, particle size and column length)
- "Money-equation":
  - higher separation efficiency N is valuable/expensive



13-11-2024 | 6

#### LIMITS OF SEPARATION POWER: LC VS. SFC

- SFC: same columns as in LC (h<sub>min</sub> and  $\phi$ )
- Viscosity is 3-8x lower in SFC than LC
- What about pressure drop?



| Mode | P <sub>max</sub> (bar) | F (ml/min) |
|------|------------------------|------------|
| LC   | 1300-1500              | 2-5        |
| SFC  | 413-660                | 3-5        |

• SFC allows fast separations at low pressure drops, but has similar kinetic performance limits than UHPLC



#### LIMITS OF SEPARATION POWER FOR SFC

• Is there a fundamental limitation on operating pressure in SFC?



50cm, 2.1mm ID, 1.8µm at 1.3mL/min

 $2.7 \mu m$  poroshell, 3mm ID



R. De Pauw et al., J. Chromatogr. A 1374 (2014) 247–253

#### LIMITS OF SEPARATION POWER FOR SFC

- Bamba and co-workers in 2014 proposed wide elution gradients: SFC => EFLC => HPLC, i.e. from  $CO_2$  to MeOH
- Elution of a wide range of analytes: least to most polar
- Referred to as "unified chromatography" (UC)



Nucleoshell HILIC 2.7 $\mu$ m, 100 × 3.0 mm column



K. Taguchi et al., J. Chromatogr. A 1362 (2014) 270–277 V. Desfontaine et al., J. Chromatogr. A 1562 (2018) 96–107

#### LIMITS OF SEPARATION POWER FOR SFC

• West and co-workers applied combined flow rate and backpressure gradients:



Fig. 1. Gradient profile in the optimized method showing the variation of co-solvent (blue lines), back-pressure (orange lines) and flow rate (green lines).

Chiralpak ZWIX(+), 150 × 3.0 mm, 3  $\mu$ m

A. Raimbault et. al., J. Chromatogr. A 1616 (2020) 460772



- Separation performance not only determined by mobile phase viscosity, columns and pump pressure
- Instrumental contributions to dispersion and pressure drop:
   Injection





Trends in Analytical Chemistry 119 (2019) 115619



**Fig. 1.** Representative chromatogram and peak variances for the estimation of system variance by using the "in presence of column" methodology. Instrument: Acquity UPC<sup>2</sup>, column: Waters BEH 1.7  $\mu$ m (100 mm × 3.0 mm) mobile phase: 10% MeOH in CO<sub>2</sub>, temperature: 40 °C, flow rate: 2 mL/min. Test analytes: butylparaben, caffeine, theobromine, betamethazone, chlorthalidone and hydrochlorothiazide.



A. Grand-Guillaume Perrenoud et al., J. Chromatogr. A 1314 (2013) 288–297

- $\sigma_{V,col}^2 = (V_0^2/N) \cdot (1+k_e)^2$
- How large is column dispersion:  $(k_e = 2.16)$ 
  - 4.6mm ID, 25cm, 5μm: 2500 μL<sup>2</sup>
  - 4.6mm ID, 15cm, 3.5μm: 1000 μL<sup>2</sup>
  - 2.1mm ID, 10cm, 2 $\mu m$  fully porous: 17  $\mu L^2$
  - 2.1mm ID, 5cm, 1.5μm superficially porous particles: 6 μL<sup>2</sup>
- Evolution in extra-column dispersion in LC
  - HPLC systems: 20-100 μL<sup>2</sup>
  - UHPLC systems: < 10  $\mu L^2,$  optimized systems <  $2\mu L^2$
- Extra-column dispersion in SFC ?



Trends in Analytical Chemistry 119 (2019) 115619

# $\sigma_{V,col}^2 = (V_0^2/N) \cdot (1+k_e)^2$

- Extra-column dispersion in SFC
  - Much less investigated than in LC
  - Estimated by Guillarme and co-workers (10% MeOH in CO<sub>2</sub>)
    - 23 and 83  $\mu L^2$  for F = 1ml/min and 2ml/min on UPC<sup>2</sup>
    - 55 and 81  $\mu$ L<sup>2</sup> for F = 1ml/min and 2ml/min on Agilent SFC

$$\sigma_{V,tot}^{2} = \sigma_{V,ec}^{2} + \sigma_{V,col}^{2}$$

$$\int_{N_{obs}}^{N_{obs}} = (V_{0}^{2}/\sigma_{V,tot}^{2}) \cdot (1+k_{e})^{2}$$



A. Grand-Guillaume Perrenoud et al., J. Chromatogr. A 1314 (2013) 288–297

 $\sigma_{V,col}^2 = (V_0^2/N) \cdot (1+k_e)^2$  $\sigma_{V,tot}^2 = \sigma_{V,ec}^2 + \sigma_{V,col}^2$  $N_{obs} = (V_0^2/\sigma_{V,tot}^2) \cdot (1+k_e)^2$ 

- Extra-column dispersion in SFC
  - 50  $\mu$ L<sup>2</sup> extra-column dispersion for columns of 15cm long, with N = 25000, as a function of k<sub>e</sub> for different column ID's
  - Observed efficiency



3.0 mm ID trade-off between ECBB and flow rate limitations





- Sources of extra-column dispersion in SFC
  - Analytes are dissolved in a strong(er) solvent (~mainly organic) than mobile phase (~ mainly CO<sub>2</sub>)
  - Detector cells design and volumes not optimized as in UHPLC
  - Often larger ID tubing employed (170µm vs. 75-120µm in UHPLC)



- Sources of extra-column dispersion in SFC: detector
  - Detector contribution: SFC 1.7µL flow cell vs. ultra-low dispersion max light cartridge

Agilent 1290 Ultra-Low Dispersion Max-Light Cartridge Flow Cell; V(σ)=0.6µL



#### Max. Press.: 6 MPa/60 bar/870 psr



R. De Pauw et al., J. Chromatogr. A 1403 (2015) 132–137

- Sources of extra-column dispersion in SFC: detector
  - Sample solvent EtOH/IPA/hexane: 10/5/85,  $V_{inj} = 0.8\mu L$
  - P<sub>back</sub> = 130 bar, 2.1x100mm 1.8µm, F=1ml/min, 8 V% MeOH
  - Tubing
    - Length (50cm)
    - Inner diameter 250 µm ID





R. De Pauw et al., J. Chromatogr. A 1403 (2015) 132–137

- Sources of extra-column dispersion in SFC: detector
  - Sample solvent EtOH/IPA/hexane: 10/5/85,  $V_{inj} = 0.8\mu L$
  - P<sub>back</sub> = 130 bar, 2.1x100mm 1.8µm, F=1ml/min, 8 V% MeOH





R. De Pauw et al., J. Chromatogr. A 1403 (2015) 132–137

- Sources of extra-column dispersion in SFC: tubing
  - Sample solvent EtOH/IPA/hexane: 10/5/85,  $V_{inj} = 0.8\mu L$
  - P<sub>back</sub> = 130 bar, 2.1x100mm 1.8µm, F=1ml/min, 8 V% MeOH
  - Tubing
    - Length (50cm)
    - Inner diameter variable
      - 250µm
      - 170µm





*R. De Pauw et al., J. Chromatogr. A* 1403 (2015) 132–137

- Sources of extra-column dispersion in SFC: tubing
  - Sample solvent EtOH/IPA/hexane: 10/5/85,  $V_{inj} = 0.8\mu L$
  - P<sub>back</sub> = 130 bar, 2.1x100mm 1.8µm, F=1ml/min, 8 V% MeOH
  - Tubing
    - Length (50cm)
    - Inner diameter variable
      - 250µm
      - 170µm
      - 120µm





R. De Pauw et al., J. Chromatogr. A 1403 (2015) 132–137

- Optimized system for minimal extra-column dispersion
  - Sample solvent EtOH/IPA/hexane: 10/5/85,  $V_{inj} = 0.8\mu L$
  - P<sub>back</sub> = 130 bar, 2.1x100mm 1.8µm, F=1ml/min, 8 V% MeOH
  - Tubing 50cm, 120µm





R. De Pauw et al., J. Chromatogr. A 1403 (2015) 132–137

#### EXTRA-COLUMN PRESSURE

- Watch out for narrow ID tubing in SFC at high flow rate!
- 4.6 mm ID column (10% MeOH) and 120 $\mu$ m tubing in system





R. De Pauw et al., J. Chromatogr. A 1361 (2014) 277–285

- Feed injector: dilute sample with mobile phase
- Injection flow rate can be varied (max. 1 ml/min)
- Overfeed volume needed to fully inject loaded sample volume





K. Vanderlinden et al., J. Chromatogr. A 1630 (2020) 461525

- Feed injector: dilute sample with mobile phase
- Injected sample plug increases in volume  $\sim 1+F/F_{feed}$
- Sample solvent is diluted with mobile phase (~ mainly CO<sub>2</sub>)





K. Vanderlinden et al., J. Chromatogr. A 1630 (2020) 461525

#### • Feed injector: effect of feed flow rate $F_{feed}$ for F = 2.5 ml/min





K. Vanderlinden et al., J. Chromatogr. A 1630 (2020) 461525

- Optimal feed flow rate  $F_{feed}$  found for strong dilution (3-6x)
- Optimal ratio  $F_{\text{feed}}/F$  independent on flow rate F
- Stronger dilution for solutes with larger dependency of k on  $\boldsymbol{\phi}$





K. Vanderlinden et al., J. Chromatogr. A 1630 (2020) 461525

- CO<sub>2</sub>-based mobile phases exhibit interesting properties but are often overstated for modern conditions and applications
- Kinetic separation performance of modern SFC instruments is similar to UHPLC
- Need for backpressure and lower maximum pump pressure decreases potential gains from low viscosity mobile phase and application of UC-gradients
- Extra-column band broadening can still be significantly improved for SFC to fully exploit advantages for small superficially porous particles and narrow ID columns



# HPLC 2025 BRUGES BELGIUM June 15-19, 2025

#### https://hplc2025-bruges.org



Registrations open:Dec. 9th, 2024Oral abstract deadline:Jan. 15th, 2025

# **Top-level science amid UNESCO world heritage**

Strong focus on young scientists & industry research



