

Oligonucleotide impurity analysis using an innovative SFC approach

Nov 7, 2024

Shinnosuke Horie, Shimadzu Europa GmbH

in place of Momoka Hayashida, Shimadzu Corporation

1. Introduction | Oligonucleotide therapeutics

Oligonucleotide therapeutics **draw** attention as one of the new drug modalities.

- Target at mRNA and miRNA that cannot be approached by existing drugs.
 →Expected to be a treatment for diseases that have been difficult to treat.
- 20 products were approved worldwide. (except for mRNA therapeutics, as of June 2024). (National Institute of Health Sciences, Division of Molecular Target and Gene Therapy Products, "Approved ON therapeutics," 2024-10-15)
- Composed of chemically modified oligonucleotides to improve biostability.
 e.g. phosphorothioate (PS) modification was used in 12 approved oligonucleotide therapeutics.

PS modification

Quality control methods have been discussed

1. Introduction | Quality control issues

Co-elution of structurally related impurities

PS-modified oligonucleotide therapeutics and its impurities

Chromatogram of synthesized oligonucleotide therapeutics (ion pair reversed-phased liquid chromatography; IPRP-LC)

A. Krotz et al., Bioorganic Med. Chem. Lett. 1997, 7, 73–78.

J.M. Sutton. et al., J. Am. Soc. Mass Spectrom. 2020, 31(9), 1775-1782.

The method with different selectivity from IPRP-LC has been desired

We focus on SFC

G.

1. Introduction | Features of SFC with CO₂

4/29

1. Introduction | Goal of this work

Evaluate the applicability of SFC separation to oligonucleotide analysis

1. Materials | Analytes

	Analytes		Base	Base	Base	Base
Target	Sequence	[M-H] ⁻	HO		HO-	
a. T4	5'-T _o T _o T _o T-3'	1153.22	O Base	$e^{-s} = 0$ Base	O -S-P=O Base -	O Base
b. T4+1PS	5'-T _s T _o T _o T-3'	1169.20				
c. T4+2PS	5'-T _s T _o T _s T-3'	1185.18	\mathbf{v}	\sum_{o}	\sum_{o}	$\sum_{i=1}^{n}$
d. T4+3PS	5'-T _s T _s T _s T-3'	1201.15		Base - <mark>O</mark> -P=O	Base - <mark>o</mark> p=O Ba	se - <mark>S</mark> —P=O Base
e. TAGC	5'-T _o A _o G _o C-3'	1172.24				
f. TAGC+1PS	5 5'-T _s A _o G _o C-3'	1188.22	O ⁻○ −P=O	O ₽ase - <mark>o</mark> P=O	O ₽ase - s —₽=O	Ó Base - <mark>s – P=O</mark> Base
g. TAGC+2PS	S 5'-T _s A _o G _s C-3'	1204.19	6			
h. TAGC+3PS	S 5'-T _s A _s G _s C-3'	1220.17	6	н он	н Он	OH
Tu thumiding /	V. adapasina C. a	Lanasina Cuautidia	ful	I PO +1	PS +2P	S +3PS
s ·PS linkage	o PO linkage		P, NH ₂	NH ₂	O II	NH ₂
			N	N N	N NH	N

()

 \sim

`NH₂

ww

С

N v

G

T4 were eluted from five types of column using the modifier containing <u>ammonium formate</u>

1-2. Results | 1st Column screening

→ Diol II column provides better separations.

1-3. Results | 2nd Column screening

We evaluate columns modified with polar stationary phases.

SHIMADZU

1-4. Results | Optimize additives for hydrophilic sequnces

➡ Aminoethanol acetate provides better peak shape and separation performance

1-5. Results | Sequence-dependency for peak shape

Good peak shapes were obtained in the sequences whose GC content was less than ½

N: theoretical plate numbers *r*: correlation coefficient

1-6. Results | Retention behavior

• Retention times of the selected sequences were **positively correlated with polar surface areas**

1. Summary

We evaluated the applicability of SFC to oligonucleotide analysis, using 4-mer oligonucleotides with different PS contents.

- Column screening revealed that Diol II provided better selectivity to PO and PS linkages.
- After examining several additives, we obtained good peak shapes and resolutions with aminoethanol.
- When the GC contents were less than 1/2, good peak shapes were obtained in the optimized method.

13/29

2. Introduction | Next topics

Evaluate the applicability of SFC separation to oligonucleotide analysis

1 Evaluation the separation performance for a 4-mer oligonucleotide, a model compound

- Optimization of column and modifier composition
- Separation performance for 4-mer with varying PS contents
- Retention behavior

(M. Hayashida et el., J of Chromatogr. A, **2023**, 1708, 464333)

2

Apply to longer sequences

- Optimization of modifier composition for longer sequences
- Separation performance for deaminated products
- (M. Hayashida et el., J of Chromatogr. A, 2025, 1744, 465731)

2. Introduction | Deamination analysis

- The 4-amino group of a cytidine, protected with acyl group, can be converted into a hydroxyl group due to the basic conditions of deprotection.
- Deamination analysis using MS is often challenging, and thus chromatographic separation is important.

A method with **different selectivity from ion pair reverse phase (IPRP) chromatography** has been desired.

2. Materials | Purification for chemically synthesized oligonucleotides

16/29

2-1. Results | Additives for the modifier

Analytical conditions Flow rate : 1 mL/min Modifier: methanol/water=95:5 containing 50 mM 2-aminoethanol or octylamine acetate B conc.: 20% (0–2 min), 20–60% (2– 20 min), 60% (20–24 min), 60–20% (24–25 min), 20% (25–30 min) Make-up: 0.1 mL/min, methanol Column: Shim-pack UC-Diol II (4.6x150 mm; 3 μ m) BPR : 10.0 MPa, 50 °C Oven temp.: 35 °C Injection vol.: 1 μ L, 100 μ M

Peak	Sequence (DNA, 5'-3')	m/z	Peak	Sequence (5'-3', full 2'-MOE, <u>C</u> : 5-methyl cytosine)	m/z
Α	DMTr-TCACTTTCAT	[M-2H] ²⁻ , 1626.32	1	DMTr-T <u>C</u> A <u>C</u> TTT <u>C</u> AT	[M-3H] ³⁻ , 1344.69
Α'	TCACTTTCAT	[M-2H] ²⁻ , 1475.26	1'	T <u>C</u> A <u>C</u> TTT <u>C</u> AT	[M-3H] ³⁻ , 1243.97
В	DMTr-TCACTTTCATAATGCTGG	[M-4H] ⁴⁻ , 1440.51	2	DMTr-T <u>C</u> A <u>C</u> TTT <u>C</u> ATAATG <u>C</u> TGG	[M-5H] ⁵⁻ , 1430.15
Β'	TCACTTTCATAATGCTGG	[M-4H] ⁴⁻ , 1364.98	2'	T <u>C</u> A <u>C</u> TTT <u>C</u> ATAATG <u>C</u> TGG	[M-5H] ⁵⁻ , 1369.73

- Octylamine acetate provided better peak shape for 10- and 18-mer
- Sharp peak for 2'-MOE-modified 18-mer were detected

2-2. Results | Optimize additives

Peak	Sequence (5'-3', full 2'-MOE, <u>C</u> : 5-methyl cytosine)
1	DMTr-T <u>C</u> A <u>C</u> TTT <u>C</u> AT
2	DMTr-T <mark>T</mark> A <u>C</u> TTT <u>C</u> AT
3	DMTr-T <u>C</u> A <u>C</u> TTT <u>C</u> ATAATG <u>C</u> TGG
4	DMTr-TTA <u>C</u> TTT <u>C</u> ATAATG <u>C</u> TGG

Analytical conditions
Flow rate: 1 mL/min
Modifier: methanol/water=95:5 containing 50 mM additive and 50 mM acetic acid
B conc.: 30% (0–5 min), 30–60% (5–30 min), 60% (30–35 min), 60–30% (36–40 min)
Make-up:0.1 mL/min, methanol
Column: Shim-pack UC-Diol II (4.6x150 mm; 3 µm)
BPR:10.0 MPa, 50 °C
Oven temp.: 35 °C
Injection vol. :1 μL, 100 μM

- Primary amine provided better peak shapes than secondary and tertiary amines
- Octylamine acetate provided shaper peaks for 18-mer

2-3. Results | Optimize column oven temp.

Peak	Sequence (5'-3', full 2'-MOE, <u>C</u> : 5-methyl cytosine)
1	DMTr-T <u>C</u> A <u>C</u> TTT <u>C</u> AT
2	DMTr-T <mark>T</mark> A <u>C</u> TTT <u>C</u> AT
3	DMTr-T <u>C</u> A <u>C</u> TTT <u>C</u> ATAATG <u>C</u> TGG
4	DMTr-T <mark>T</mark> A <u>C</u> TTT <u>C</u> ATAATG <u>C</u> TGG

Analytical conditions
Flow rate: 1 mL/min
Modifier: methanol/water=95:5 containing 50 mM octylamine acetate
B conc.: 30% (0–5 min), 30–60% (5–30 min), 60% (30–35 min), 60–30% (36–40 min)
Make-up:0.1 mL/min, methanol
Column:Shim-pack UC-Diol II (4.6x150 mm; 3 μm)
BPR: 10.0 MPa, 50 °C
Oven temp.: 35-50 °C
Injection vol. :1 μL, 100 μM

50 and 60 °C provided better separation performance \rightarrow 50 °C was selected

2-4. Results | Separate deaminated impurities contained in DMTr-on oligos

- SFC successfully separated some deaminated products from the 10- and 18-mer main products.
- Sequence d were coeluted with the main product using IPRP-LC.

2-5. Results | Separate deaminated impurities contained in DMTr-off oligos

• DMTr-on and off sequences were almost coeluted using SFC.

 The separation capability for DMTr-off sequences was higher than that for DMTr-on sequences using IPRP-LC

2. Discussions | Different retention behavior

- The retention behavior of DMTr-on oligonucleotides using SFC was dominated by interaction with oligonucleotides.
- That using IPRP-LC was **strongly influenced by DMTr group** and thus the target sequences and their deaminated impurities were difficult to separate because of the similar hydrophobicity
- SFC could be a suitable method for analyzing oligonucleotides having hydrophobic organtargeting ligands as well as the DMTr group

2. Summary

- Octylamine acetate provided a sharp peak for 10- and 18-mer 2-MOE-modified oligonucleotides.
- 50 °C was better for column oven temp. to separate deaminated products.
- DMTr-on and –off oligos were co-eluted using SFC.
- Several deaminated impurities were separated from the main products using SFC.
- SFC and IPRP-LC exhibited <u>different</u> selectivity

1 & 2. Conclusion

This study demonstrated the applicability of SFC in oligonucleotide analysis

Acknowledgement

- This research was a collaboration work with Prof. Satoshi Obika and Prof. Takao Yamaguchi (Graduate School of Pharmaceutical Sciences, Osaka University)
- This research was partially supported in part by AMED under Grant Number JP21ae0121022, JP21ae0121023, JP21ae0121024 (Project leader: Satoshi Obika).
- Co-authors: Satoshi Obika and Takao Yamaguchi (Osaka University) Junichi Masuda and Risa Suzuki (Shimadzu Corporation)
- Colleagues at Obika laboratory of Osaka University and Shimadzu Group
- Prof. Takeshi Bamba (Kyushu University)