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SSL

Design
Structure-activity
data is used to set a
new hypothesis, and
a novel molecule (or
set of molecules) is 
designed to test it.

Make
A synthetic route is 
established and 
enough for testing of 
the novel 
molecule(s) is made.

Test
Simultaneous 
assessment of key 
drug-like properties 
of the molecule(s). 
With assays 
appropriate for the 
biological target.

Analyze
Assay data is 
analyzed and used to 
update on-going 
structure-activity 
concepts and/or 
tested against exit 
criteria.

Drug Development Process – DMTA Cycle
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We begin supporting 
MedChem with analysis 
and purification here. 
From the first screen, 
until CDID – in a non-
GMP environment



Our Road to Zero Carbon
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Figure from “The Green ChemisTREE: 20 years after taking root with the 12 principles”
Green Chem. 2018, 20, 1929-1961, DOI: 10.1039/C8GC00482J

Our ambition zero carbon strategy is 
to take climate action now for healthy 
people and a healthy planet, by 
becoming carbon negative across our 
entire value chain by 2030.

Zero carbon emissions from our global 
operations (sites and fleet) by the end 
of 2025.

https://doi.org/10.1039/C8GC00482J


The Environmental Footprint of  API Production
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Process Mass Intensity (PMI) =
mass of all reactants

mass of products

Figure from open source https://www.flaticon.com/

Process Mass Intensity - PMI



Design of  Synthetic Route

Target



Design of  Synthetic Route

Target

Each synthetic step raises the PMI by an average of 50



Cmpnd Technique Type of purification Incoming 

crude API 

(kg)

Outgoing pure 

API (kg)

Solvent consumption 

(L)

PMI 

(kg waste/kg API)

A SFC Achiral 1.6 1.3 115 110

B SFC Chiral 3.4 1.5 90 160

C SFC Achiral 0.3 0.25 100 95

D SFC Achiral 1.0 0.9 40 35

E LC Chiral 0.8 0.4 1000 1600

F LC Achiral 1.0 0.8 825 825

G SFC Chiral 0.8 0.55 100 150

Examples of  Chromatography PMI
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The R’s of  Sustainability
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REPLACE

REFUSE

REDUCE

RE-USE

RECYCLE

The R’s of  Sustainability
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Example Compound – Synthetic Route
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Oven 1

Chiralpak IA

Chiralpak IB-N

Chiralpak IC

Chiralpak ID

Chiralpak IE

Chiralpak IF

Oven 2

Lux i-A3

Chiralpak IH

Chiralpak IJ

Chiralpak IK

Chiralpak IM

(S,S) Whelk-O1

Oven 3

Lux A1

Chiralpak IN

Lux C1

Lux C2

Lux C3

Lux C4

Modifiers

A: IPA/NH3 20 mM  C: MeOH/NH3 20 mM

B: EtOH/NH3 20 mM D: ACN/NH3 20 mM
 

Chiral Screen Set-up
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Analytical Separation of  4 Isomers
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• Throughput: 10 g/h

• Solvent consumption: 6.4 L/h

o Total: 32 L of MeOH

50-gram Purification of  API Atropisomers
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Example compound – synthetic route
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CO2

Alcohol
modifier

CO2

Crude compound

Pure compound

Waste

Separation column

Modifier

CO2

Evaporation

+

Continuous Recycling while Purifying 
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Continuous Recycling while Purifying 

Racemized material
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CO2

Alcohol
modifier

CO2

Racemized material

Desired atropisomerWaste

Separation column

Modifier

CO2

Racemization

Toluene, 90 C

+ Undesired atropisomer

Evaporation

Continuous Recycling while Purifying 
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CO2
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CO2

Racemization
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+ Undesired atropisomer
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Continuous Recycling while Purifying 
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• Throughput: 19.5 g/h

• Solvent consumption: 6.7 L/h

o Theoretical total: 465 L

o After recycling: 100 L of EtOH (-78%)

1.34 kg Purification of  Precursor Atropisomers
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• Throughput: 19.5 g/h

• Solvent consumption: 6.7 L/h

o Theoretical total: 465 L

o After recycling: 100 L of EtOH (-78%)

Comparison between API and Precursor Methods

• Throughput: 10 g/h

• Solvent consumption: 6.4 L/h

o Theoretical total: 832 L

o After recycling: 183 L of MeOH (-78%)

API method Precursor method
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REPLACE

REFUSE

REDUCE

REUSE

RECYCLE

• SFC instead of LC

• Replace aliphatic 
and halogenated 
solvent with EtOH 
and IPA

• Use sustainably 
sourced EtOH

• Maximize loading, 
and thus throughput

• Stack injections to 
reduce solvent 
consumption and 
increase efficiency

• Purchased recycled 
CO2 from other 
industries’ waste

• Racemize the 
undesired isomer 
to increase the 
yield

Do not settle for 
suboptimal 
conditions.
Screen thoroughly 
in all suitable 
synthetic steps.

• Reuse the modifier 
distillate from 
evaporation

• Reuse the CO2 
mobile phase 
within the system 

• Reuse packing 
material for 
columns; and reuse 
the columns for as 
long as they last

Recap



Thank you.
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Thank you.
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