A Novel LC-MS/MS Quantification Method for Amino Acids in Human Plasma, Including Alloisoleucine, without Ion Pairing or Derivatization.
Aurore JAFFUEL1, Alban HUTEAU2, 1, SHIMADZU France, Noisiel, FRANCE.

Overview
We here present a new method for the quantification of 47 amino acids, including the separation of leucine and alloisoleucine (specific marker for MSUD). Additional amino acids may be added upon request. Total cost per sample is reduced from 13€ to 2€ to compare to current methods. Certified plasma controls showed good accuracies and repeatability.

1. Introduction
Amino acids are routinely assayed to diagnose inherited metabolism disorders. As they are highly polar compounds, they are hardly retained onto reverse phase columns. Derivatization or addition of ion pairing reagent in the mobile phase is required. For easier and rugged analysis of amino acids, there was a need for a new solution not using pre-mentioned reagents. Recently, a new LC-MS/MS method was developed for the simultaneous high sensitive quantification of amino acids, using a mixed-mode column and typical volatile mobile phase suitable for LC-MS/MS (1). However a separate injection was still needed for the quantification of alloisoleucine. Alloisoleucine is of much interest for newborn screening as it is currently the most specific and most sensitive diagnostic marker for all forms of maple syrup urine disease (MSUD). We here present a new analytical method enabling the quantification 47 amino acids, in a unique analytical run, including the separation and specific quantification of leucine, isoleucine and alloisoleucine. Sample preparation is very simple. Plasma is precipitated and supernatant is directly injected. All amino acids were separated in 25 minutes. Particular attention was paid to separate isobaric amino acids chromatographically or by using specific MRM transitions. Plasma calibrators as well certified plasma controls showed good repeatability and excellent accuracy values.

2. Materials and Methods
The new method was developed using LCMS-8050 triple quadrupole mass spectrometer (Shimadzu Corporation) coupled to the Nexera X2 high performance liquid chromatography (Shimadzu Corporation). The separation was performed using IntraMax Amino 150mm column (Imtak Company). An acetonitrile, tetrahydrofuran and ammonium formate buffer with 0.3% of formic acid was used as mobile phase A, and an acetonitrile and ammonium formate buffer mix was used as mobile phase B, in gradient mode. Injection volume was 1μL, reducing the matrix effect. Certified plasma samples from Recpe were used as calibrators and certified plasma samples from MCA Laboratory were used as quality control samples (QC). The sample preparation consisted of a protein precipitation followed by a centrifugation.

3. Results
3.1. Typical chromatogram
A total of 47 amino acids, including alloisoleucine, were simultaneously quantified in an analysis time of 25 min. MRM transitions and source parameters were optimized using LabSolutions Connect software (Shimadzu Corporation) and specific MRM were chosen for isobaric samples when hardly resolved by chromatography. Typical chromatogram in human plasma is showed bellow.

3.2. Alloisoleucine specific quantification
The chromatographic separation of leucine, isoleucine and alloisoleucine enables their specific quantifications in a single run, already including a wide number of amino acids. This specific quantification is reinforced by the use of specific transitions. A typical chromatogram is presented bellow.

3.3. Method Performance
Analytical performances of the method were monitored using certified plasma samples from Recipe as calibrators and certified plasma controls from MCA Laboratory as QC samples. Accuracies of calibrators and QC samples were comprised between 80% and 120% for all analytes, and RSD values were all below 15% (n=3 intra-day, over 3 days for inter-day).

4. Conclusion
A novel LC-MS/MS method was developed for the simultaneous and high sensitive quantification of 47 amino acids in human plasma, with no need of derivatization or ion pairing agent, and a very simple sample preparation. The method directly includes the quantification of alloisoleucine, which is essential for the newborn diagnostic of maple syrup urine disease (MSUD). Additional amino acids may be added upon request. The total average cost per sample is reduced from 13€ to less than 2€ per sample compared to current methods with derivatization. Amino acids were quantified in a total analysis time of 25 min with a good distinction between isobars. Plasma control sample injections showed high repeatability and accuracy. The method proved its fits for purpose to support diagnosis and may be used also in clinical studies to monitor drug effects on metabolism.

Table 1. Human plasma calibrators : accuracies and RSD values.

Table 2. Human plasma quality controls : accuracies and RSD values.

Conclusions & Discussion
A novel LC-MS/MS method was developed for simultaneous and high sensitive quantification of 47 amino acids in human plasma, with no need of derivatization or ion pairing agent, and a very simple sample preparation. The method directly includes the quantification of alloisoleucine, which is essential for the newborn diagnostic of maple syrup urine disease (MSUD). Additional amino acids may be added upon request. The total average cost per sample is reduced from 13€ to less than 2€ per sample compared to current methods with derivatization. Amino acids were quantified in a total analysis time of 25 min with a good distinction between isobars. Plasma control sample injections showed high repeatability and accuracy. The method proved its fits for purpose to support diagnosis and may be used also in clinical studies to monitor drug effects on metabolism.

Disclaimer: For Research Use Only. Not for use in diagnostic procedures. Not available in the USA, Canada and China.